Epicardial Left Ventricular Mapping Using Subxiphoid Video Pericardioscopy

Marco A. Zenati, MD, Alaa Shalaby, MD, Gregory Eisenman, RT(R), John Nosbisch, BSN, RCIS, Jeremy McGarvey, BS, and Takeyoshi Ota, MD, PhD

Division of Cardiac Surgery, University of Pittsburgh, and Sections of Electrophysiology, VA Pittsburgh HealthCare System and University of Pittsburgh, Pittsburgh, Pennsylvania; and St. Jude Medical Inc, Minnetonka, Minnesota

We report a novel subxiphoid video pericardioscopy approach for epicardial mapping while minimizing surgical invasiveness.


Treatment of ventricular tachycardia (VT) remains a challenge due to inaccessibility of the epicardial left ventricular (LV) myocardium from the endocardial approach. It is estimated that up to 40% of patients with hemodynamically unstable VT require additional epicardial ablation after an endocardial ablation attempt, and 57% of those with previously failed ablations have an epicardial circuit [1]. Sosa and Scanavacca [2] described a subxiphoid approach for LV epicardial mapping; however, this technique requires significant fluoroscopically guided catheter manipulation [3] and lacks sufficient visualization of epicardial landmarks. In this report, we present a novel subxiphoid video pericardioscopy (SVP) approach for epicardial mapping that allows direct visualization of the LV epicardium with minimal use of fluoroscopy.

A 48-year-old man with an extensive cardiac history, including two myocardial infarctions, congestive heart failure, and ischemic cardiomyopathy, presented with recurrent hemodynamically intolerable VT and multiple firings of the implantable cardiac defibrillator. After unsuccessful maximal pharmacologic management and endocardial radiofrequency ablation, the patient was deemed a candidate for epicardial LV mapping and ablation.

After induction of general anesthesia and successful placement of the endotracheal tube, the intended subxiphoid and femoral access sites were prepped and draped using sterile technique. Percutaneous femoral arterial/venous sheaths were inserted and electrophysiology multi-electrode catheters were advanced into the right atrium, coronary sinus, and right ventricle. Then a 15 mm subxiphoid incision was made followed by minimal tissue dissection down to the pericardial level. A small (5 mm) pericardiotomy was performed under direct visualization. A SVP device (FLEXView System; Boston Scientific Cardiac Surgery, Santa Clara, CA), consisting of a 7-mm extended length endoscope with two proximal entry service ports (Figs 1A and B), was then inserted inside the pericardial cavity and the anterior LV was easily visualized (Figs 1C and D). Through one of the working ports of the FLEXView device, a 6F decapolar catheter (St. Jude Medical, Minnetonka, MN) was introduced and directly visualized through the FLEXView scope to have proximal electrodes in contact with the LV epicardium. A three-dimensional geometric shell and voltage map (Fig 2) was then created of the collected points by using a noncontact mapping system (NAVX; St. Jude Medical). Scope and catheter position were cross-referenced in orthogonal views using brief fluoroscopy views. The atrial surface was excluded using direct visualization through the endoscope and cardiac electrogram signals. The patient was found to have a large anterolateral scar with an isthmus of moderate voltage tissue on the voltage map that was defined as a potential target for ablation.

The target site was visualized to have a thick epicardial fatty surface and was found to be directly adjacent to a patent left anterior descending artery by coronary angiography. Given a high risk for occlusion of the left anterior descending artery, radiofrequency ablation was not performed. The incision was closed with a pericardial drain left in place. The procedure lasted a total of 4 hours 37 minutes, with 10 minutes 45 seconds of fluoroscopy time.

Comment

A significant percentage of hemodynamically unstable and ablation-resistant VT has an epicardial component.
that requires epicardial mapping and ablation. The sub-
xiphoid approach for epicardial LV mapping described
by Sosa and Scanavacca [2] does not allow access for
targeted epicardial ablations and relies heavily on pro-
longed use of fluoroscopy. Furthermore, alternative ap-
proaches such as coronary vein mapping are inherently
restricted to their area of distribution. Average fluoros-
copy times in one published catheter-based epicardial
mapping study were considerably higher, at 48.2 min-
utes, than the 10.75 minutes in this report [3].

The SVP approach using the FLEXView system pro-
vided adequate visualization and access to the epicar-
dium of both ventricles for electroanatomic mapping,
while minimizing surgical invasiveness. We believe
that the subxiphoid video pericardioscopic approach
may facilitate minimally invasive ablation of VTs and
further develop related minimally invasive epicardial
interventions [4]. With specialized, dedicated tools for
surgical mapping and ablation on the epicardium,
minimally invasive subxiphoid techniques have the
potential to reduce associated risks while allowing
unrestricted epicardial access. We hope in the future to
further reduce fluoroscopy times using this technique
and to use novel minimally invasive robotic probes for
increased access to remote epicardial locations for
mapping and ablation [5].

The FLEXView device was purchased from Boston Scientific.

References

pericardial instrumentation for endo-epicardial mapping of
2. Sosa E, Scanavacca M. Epicardial mapping and ablation
techniques to control ventricular tachycardia. J Cardiovasc
3. Soejima K, Couper G, Cooper JM, Sapp JL, Epstein LM,
Stevenson MD. Subxiphoid surgical approach for epicardial
catheter-based mapping and ablation in patients with prior
cardiac surgery or difficult pericardial access. Circulation
4. Zenati MA, Bonanomi G, Chin AK, Schwartzman D. Left
heart pacing lead implantation using subxiphoid videoperi-
using a novel articulated robotic medical probe via a percu-